Независимое наследование признаков 3 закон менделя

Третий закон Менделя (закон независимого наследования)

Дальнейшие свои опыты Мендель немного усложнил. Теперь, вместо статистики наследования одно­,го признака, он начал изучать, как наследуются два независимых признака, выбрав первым признаком хорошо известную окрас­,ку горошин, а в качестве второго &mdash, форму горошин, которая бывает или гладкой (доминантный признак), или морщинистой (рецессивный признак). Такое скрещивание, при постановке кото­,рого изучают закономерности наследования двух признаков, как вы помните, называется дигибридным.

Скрестив чистые линии доминантной и рецессивной форм, Мендель получил в первом поколении в полном соответствии с законом единообразия гибридов первого поколения растения с семенами доминантного типа: все горошины были жёлтые гладкие.

Скрещивание гибридов первого поколения между собой дало очень интересный и неожиданный результат (рис. 32): горошины полученных растений имели четыре фенотипа, которые распределялись в соотношении: 9 частей гладких жёлтых горошин (полностью доминантный фенотип), 3 части гладких зелёных горошин (по одному признаку доминантный, по вто­,рому &mdash, рецессивный), 3 части морщинистых жёлтых горошин (также по одному признаку доминантный, по второму &mdash, рецессивный) и 1 часть морщинистых зелёных горошин (полностью рецессивный фенотип).

Рассмотрим генетические аспекты скрещивания этих растений с помо­,щью решётки Пеннета, обозначив ген, ответственный за окраску горо­,шин, буквой А, а ген, ответственный за их форму, &mdash, буквой В. Родитель­,ские формы &mdash, чистые линии по двум признакам: жёлтые гладкие (ААВВ) и зелёные морщинистые (аавв). При опылении растения с жёлтыми глад­,кими бобами пыльцой растений с зелёными морщинистыми бобами будут образовываться следующие гаметы: гаметы матери АВ и гаметы отца ав.

Составляем решётку Пеннета для первого поколения (табл. 1), соглас­,но которой все особи в поколении F1 имеют генотип АаВв и доминантный фенотип жёлтый гладкий.

Таблица 1. Генотипы и фенотипы потомков в первом поколении дигибридного скрещивания

При втором скрещивании у материнского организма уже будет четыре гаметы (АВ, Ab, аВ, ab) и такие же гаметы (АВ, Ab, аВ, ab) &mdash, у отцовского. Составляем решётку Пеннета (табл. 2).

Таблица 2. Генотипы и фенотипы потомков во втором поколении дигибридного скрещивания Материал с сайта http://worldofschool.ru

Как ни странно, но у гибридов второго поколения появились новые формы горошин, которых не было ни у родительских организмов, ни у «,прародите­,лей»,: зелёные гладкие и жёлтые морщинистые горошины. Из такого, казалось бы, простого наблюдения Мендель сделал гениальный вывод: разные признаки наследуются независимо друг от друга и могут создавать новые комбинации признаков у потомства. Это и есть третий закон Менделя, или закон независимого наследования: каждая пара Признаков наследуется независимо от других пар.

Таким образом, если рассматривать у полученных гибридов наследова­,ние каждого признака отдельно, то получим соотношение гладких и морщинистых горошин 12:4, жёлтых и зелёных тоже 12:4. Сократим эти числа на 3 и получим всё то же соотношение 3:1, что и для гибридов второго поколения при моногибридном скрещивании. Таким образом, при дигибридном скрещивании во втором поколении образуется 9 генотипов и 4 фенотипа.

Независимое наследование признаков 3 закон менделя

Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (aabb) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Aabb) и зеленые гладкие (ааВЬ), которые не встречались в исходных формах. Из этого наблюдения Мендель сделал вывод, что расщепление по каждому признаку происходит независимо от второго признака. В приведенном примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов. Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признакам, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположены в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительских особей.

Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет 61 (решетка Пеннета). Ими удобно пользоваться при анализе полигибридных скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали гаметы материнской особи, в местах пересечения вероятные генотипы потомства.

Рис. 1. Решетка Пеннета

При моногибридном скрещивании исследуется наследование одного гена. В классическом моногибридном скрещивании каждый ген имеет два аллеля. Для примера мы возьмем материнский и отцовский организмы с одинаковым генотипом «Gg». В генетике, как мы уже знаем, для обозначения доминантного аллеля используются заглавные буквы, а для рецессивного строчные. Этот генотип может дать только два типа гамет, которые содержат или аллель «G» или аллель «g».

Наша решетка Пеннета будет выглядеть следующим образом:

Суммировав одинаковые генотипы в решетке Пеннета для нашего потомства мы получим следующее соотношение по генотипам: 1 (25 ) GG: 2 (50 ) GG: 1 (25 ) GG это типичное соотношение генотипов (1:02:01) для моногибридного скрещивания. Доминантный аллель будет маскировать рецессивный аллель, что означает, что организмы с генотипами «GG» и «Gg» имеют один и тот же фенотип. Например, если аллель «G» дает желтый цвет и аллель «g» дает зеленый цвет, то генотип «gg» будет иметь зеленый фенотип, а генотипы «GG» и «Gg» желтый фенотип. Суммировав значения в решетке мы будем иметь 3G (желтый фенотип) и lgg (зеленый фенотип) это типичное соотношение по фенотипам (3:1) для моногибридного скрещивания. А соответствующие вероятности для потомства будут 75G: 25gg.

При дигибридных скрещиваниях исследуется наследование двух генов. Для дигибридных скрещиваний мы можем составить решетку Пеннета только в случае, если гены наследуются независимо друг от друга это означает, что при образовании материнских и отцовских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары. Этот принцип независимого распределения был открыт Менделем в экспериментах по дигибридным и полигибридным скрещиваниям.

Мы имеем два гена Формы и Цвета. Для формы: «R» это доминантный аллель, определяющий гладкую форму и «w» это рецессивный аллель, который дает морщинистую форму горошин. Для цвета: «Y» это доминантный аллель, определяющий желтую окраску и «g» это рецессивный аллель дающий зеленую окраску горошин. Мужское и женское растения имеют одинаковый генотип «RwYg» (гладкие, желтые).

Сначала необходимо определить все возможные комбинации гамет, для этого также можно использовать решетку Пеннета:

Таким образом, гетерозиготные растения могут дать четыре типа гамет со всеми возможными комбинациями: RY, Rg, wY, wg. Теперь составим решетку Пеннета для генотипов:

Суммировав одинаковые генотипы в решетке Пеннета, для нашего потомства мы получим следующее соотношение и вероятности по генотипам: 1(6,25 ) RRYY 2(12,5 ) RwYY: 1(6,25 ) wwYY: 2(12,5 ) RRYg: 4(25 ) RwYg: 2(12,5 ) wwYg: 1(6,25 ) RRgg: 2(12,5 ) Rwgg: 1(6,25 ) wwgg. А так как доминантные признаки маскируют рецессивные, то соотношение и вероятности по фенотипам мы получим такие: 9(56,25 ) R-Y (гладкие, желтые): 3(18,75 ) R-gg (гладкие, зеленые): 3(18,75 ) wwY (морщинистые, желтые): 1(6,25 ) wwgg (морщинистые, зеленые). Такое соотношение по фенотипам 9:3:3:1 является типичным для дигибридного скрещивания.

Составить решетку Пеннета для скрещивания между двумя растениями гетерозиготными по трем генам будет более сложно. Вот решетка для генотипов (64 клетки).

Мы привели эти примеры для общего представления и расширения знаний по генетике проблемы решения задач находятся не в сфере нашей дисциплины основ психогенетики. Кроме того, само решение требует умения пользоваться полиномами 62 и достаточно большого количества времени.

Третий закон Менделя. Условия независимого наследования и комбинирования неаллельных генов. Цитологические основы и универсальность законов Менделя. Менделирующие признаки человека.

Третий закон Менделя (независимого наследования признаков) при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Закон проявляется, как правило, для тех пар признаков, гены которых находятся вне гомологичных хромосомах. Если обозначить буквой и число аллельных пар в негомологичных хромосомах, то число фенотипических классов будет определяться формулой 2n, а число генотипических классов —, 3n. При неполном доминировании количество фенотипических и генотипических классов совпадает.

Условия независимого наследования и комбинирования неаллельных генов.

Изучая расщепление при дигибридном скрещивании, Мендель обнаружил, что признаки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбинирования признаков, формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтернативных признаков, во втором поколении F2) наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбинирование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению потомков, несущих признаки в сочетаниях, не свойственных родительским и прародительским особям. Вступают в брак дигетерозиготы по окраске глаз и способности лучше владеть правой рукой (АаВb). При формировании гамет аллель А может оказаться в одной гамете как с аллелем В, так и с аллелем b. Точно так же аллель а может попасть в одну гамету либо с аллелем В, либо с аллелем b. Следовательно, у дигетерозиготной особи образуются четыре возможные комбинации генов в гаметах: АВ, Аb, аВ, аb. Всех типов гамет будет поровну (по 25).

Это несложно объяснить поведением хромосом при мейозе. Негомологичные хромосомы при мейозе могут комбинироваться в любых сочетаниях, поэтому хромосома, несущая аллель А,равновероятно может отойти в гамету как с хромосомой, несущей аллель В так и с хромосомой, несущей аллель b. Точно так же хромосома, несущая аллель а, может комбинироваться как с хромосомой, несущей аллель В, так и с хромосомой, несущей аллель b. Итак, дигетерозиготная особь образует 4 типа гамет. Естественно, что при скрещивании этих гетерозиготных особей любая из четырех типов гамет одного родителя может быть оплодотворена любой из четырех типов гамет, сформированных другим родителем, т. е. возможны 16 комбинаций. Такое же число комбинаций следует ожидать по законам комбинаторики.

При подсчете фенотипов, записанных на решетке Пеннета, оказывается, что из 16 возможных комбинаций во втором поколении в 9 реализуются два доминантных признака (АВ, в нашем примере кареглазые правши), в 3первый признак доминантный, второй рецессивный (Аb, в нашем примере кареглазые левши), еще в 3 первый признак рецессивный, второй доминантный (аВ, т. е. голубоглазые правши), а в одной оба признака рецессивные (аb, в данном случае голубоглазый левша). Произошло расщепление по фенотипу в соотношении 9:3:3:1.

Если при дигнбридном скрещивании во втором поколении последовательно провести подсчет полученных особей по каждому признаку в отдельности до результат получится такой же, как при моногчбридном скрещивании, т.e. 3 : 1.

В нашем примере при расщеплении по окраске глаз получается соотношение: кареглазых 12/16, голубоглазых 4/16, по другому признаку правшей 12/16, левшей 4/16, т. е. известное соотношение 3:1.

Дигетерозигота образует четыре типа гамет, поэтому при скрещивании с рецессивной гомозиготой наблюдается четыре типа потомков, при этом расщепление как по фенотипу, так и по генотипу происходит в соотношении 1:1:1:1.

При подсчете фенотипов, полученных в этом случае, наблюдается расщепление в соотношении 27 : 9 : 9 : 9: :3 : 3 : 3 : 1. Это следствие того, что принятые нами во внимание признаки: способность лучше владеть правой рукой, окраска глаз и резус-фактор контролируются генами, локализованными в разных хромосомах, и вероятность встречи хромосомы, несущей ген А, с хромосомой, несущей ген В или R, зависит полностью от случайности, так как та же хромосома с геном А в равной степени могла встретиться с хромосомой, несущей ген b или r.

В более общей форме, при любых скрещиваниях, расщепление по фенотипу происходит по формуле (3 1) n , где п число пар признаков, принятых во внимание при скрещивании.

Цитологические основы и универсальность законов Менделя.

1) парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)

2) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным пблюсам клетки, а затем и в разные гаметы)

3) особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Биология

Третий закон Менделя это закон независимого распределения признаков. Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. Например, если организм гетерозиготен по двум исследуемым генам (AaBb), то он образует следующие типы гамет: AB, Ab, aB, ab. То есть, например, ген A может оказаться в одной гамете как с геном B, так и b. Это же касается и других генов (их произвольного сочетания с неаллельными генами).

Третий закон Менделя проявляется уже при дигибридном скрещивании (тем более при тригибридном и полигибридном), когда чистые линии различаются по двум исследуемым признакам. Мендель скрестил сорт гороха с желтыми гладкими семена с сортом, у которого были зеленые морщинистые семена, и получил исключительно желтые гладкие семена F1. Далее он вырастил из семян растения F1, позволил им самоопыляться и получил семена F2. И здесь он наблюдал расщепление: появились растения как с зелеными, так и морщинистыми семенами. Самое удивительное было то, что среди гибридов второго поколения оказались не только растения с желтыми гладкими и зелеными морщинистыми семенами. Также были желтые морщинистые и зеленые гладкие семена, т. е. произошла рекомбинация признаков, и получились такие комбинации, которые не встречались у исходных родительских форм.

Анализируя количественное соотношение разных семян F2, Мендель обнаружил следующее:

Если рассматривать каждый признак по отдельности, то он расщеплялся в отношении 3:1, как при моногибридном скрещивании. То есть на каждые три желтых семени приходилось одно зеленое, а на каждые 3 гладких 1 морщинистое.

Появились растения с новыми комбинациями признаков.

Соотношение фенотипов было 9 : 3 : 3 : 1, где на девять желтых гладких семян гороха приходилось три желтых морщинистых, три зеленых гладких и одно зеленое морщинистое.

Третий закон Менделя хорошо иллюстрирует решетка Пеннета. Здесь в заголовках строк и столбцов пишутся возможные гаметы родителей (в данном случае гибридов первого поколения). Вероятность образования каждого типа гаметы составляет . Также равновероятно различное их объединение в одну зиготу.

Мы видим, что образуется четыре фенотипа, два из которых ранее не существовали. Соотношение фенотипов 9 : 3 : 3 : 1. Количество разных генотипов и их соотношение более сложное:

Получается 9 разных генотипов. Их соотношение: 4 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1. При этом гетерозиготы встречаются чаще, а гомозиготы реже.

Если вернуться к тому, что каждый признак наследуется независимо, и по каждому наблюдается расщепление 3:1, то можно вычислить вероятность фенотипов по двум признакам разных аллелей, умножая вероятность проявления каждого аллеля (т. е. не обязательно пользоваться решеткой Пеннета). Так, вероятность гладких желтых семян будет равна = 9/16, гладких зеленых = 3/16, морщинистых желтых = 3/16, морщинистых зеленых = 1/16. Таким образом, мы получаем то же соотношение фенотипов: 9:3:3:1.

Объясняется третий закон Менделя независимым расхождением гомологичных хромосом разных пар при первом делении мейоза. Хромосома, содержащая ген A, может с равной вероятностью уйти в одну клетку как с хромосомой, содержащей ген B, так и с хромосомой, содержащей ген b. Хромосома с геном A никак не привязана к хромосоме с геном B, хотя они обе и были унаследованы от одного родителя. Можно сказать, что в результате мейоза хромосомы перемешиваются. Количество различных их сочетаний вычисляется по формуле 2 n , где n это количество хромосом гаплоидного набора. Так, если у вида три пары хромосом, то количество различных их комбинаций будет равно 8 (2 3 ).

Когда не действует закон независимого наследования признаков

Третий закон Менделя, или закон независимого наследования признаков, действует только для генов, локализованных в разных хромосомах или расположенных в одной хромосоме, но достаточно далеко друг от друга.

В основном если гены находятся в одной хромосоме, то они наследуются совместно, т. е. проявляют сцепление между собой, и закон независимого наследования признаков уже не действует.

Например, если бы гены, отвечающие за окраску и форму семян гороха находились в одной хромосоме, то гибриды первого поколения могли бы образовывать гаметы только двух типов (AB и ab), так как в процессе мейоза независимо друг от друга расходятся родительские хромосомы, но не отдельные гены. В таком случае во втором поколении было бы расщепление 3:1 (три желтых гладких на одно зеленое морщинистое).

Однако не так все просто. Из-за существования в природе конъюгации (сближения) хромосом и кроссинговера (обмена участками хромосом) рекомбинируются и гены находящиеся в гомологичных хромосомах. Так, если хромосома с генами AB в процессе кроссинговера обменяется участком с геном B с гомологичной хромосомой, чей участок содержит ген b, то могут получиться новые гаметы (Ab и, например, aB). Процент таких рекомбинантных гамет будет меньше, чем если бы гены находились в разных хромосомах. При этом вероятность кроссинговера зависит от удаленности генов на хромосоме: чем дальше, тем вероятность больше.

Законы Менделя

Законы Менделя

Законы Менделя это принципы передачи наследственных признаков от родителей к потомкам, названные в честь своего первооткрывателя монаха Грегора Менделя. Объяснения научных терминов - в словаре генетических терминов.

Законы Менделя справедливы только для моногенных признаков, то есть признаков, каждый из которых определяется одним геном. Те признаки, на проявление которых влияют два или несколько генов, наследуются по более сложным правилам.

Закон единообразия гибридов первого поколения (первый закон Менделя) (другое название закон доминирования признаков): при скрещивании двух гомозиготных организмов, один из которых гомозиготен по доминантному аллелю данного гена, а другой по рецессивному, все особи первого поколения гибридов (F1) будут одинаковыми по признаку, определяемому данным геном, и идентичными тому из родителей, который несет доминантный аллель. Все особи первого поколения от такого скрещивания будут гетерозиготными.

Предположим, мы скрестили кота черного окраса и кошку коричневого. Черный и коричневый окрас определяется аллелями одного и того же гена, аллель черного окраса В доминирует над аллелем коричневого b. Скрещивание можно записать как BB (кот) x bb (кошка). Все котята от этого скрещивания будут черными и иметь генотип Вb (рисунок 1).

Заметим, что рецессивный признак (коричневый окрас) на самом деле никуда не пропал, он замаскирован доминантным признаком и, как мы сейчас увидим, проявится в последующих поколениях.

Закон расщепления (второй закон Менделя): при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении (F2) число потомков, идентичных по данному признаку доминантному родителю, будет в 3 раза больше, чем число потомков, идентичных рецессивному родителю. Другими словами, расщепление по фенотипу во втором поколении будет равно 3:1 (3 фенотипически доминантных : 1 фенотипически рецессивный). (расщепление это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении). По генотипу расщепление будет равно 1:2:1 (1 гомозигота по доминантному аллелю : 2 гетерозиготы : 1 гомозигота по рецессивному аллелю).

Такое расщепление происходит благодаря принципу, который получил название закона чистоты гамет. Закон чистоты гамет гласит: в каждую гамету (половую клетку яйцеклетку или сперматозоид) попадает только один аллель из пары аллелей данного гена родительской особи. Когда гаметы сливаются при оплодотворении, происходит их случайное соединение, которое и приводит к данному расщеплению.

Возвращаясь к нашему примеру с кошками, предположим, ваши черные котята подросли, вы за ними не уследили, и двое из них произвели потомство четырех котят.

И кот, и кошка гетерозиготы по гену окраса, они имеют генотип Bb. Каждый из них согласно закону чистоты гамет производит гаметы двух типов B и b. В их потомстве будет 3 котенка черных (ВB и Bb) и 1 коричневый (bb) (Рис. 2) (На самом деле, эта закономерность статистическая, поэтому расщепление выполняется в среднем, и такой точности в реальном случае может и не наблюдаться).

Для наглядности результаты скрещивания на рисунке приведены в таблице, соответствующей так называемой решетке Пеннета (диаграмме, позволяющей быстро и ясно расписать конкретное скрещивание, которой часто пользуются генетики).

Закон независимого наследования (третий закон Менделя) при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. скрещивании). Закон независимого расщепления выполняется только для генов, находящихся в негомологичных хромосомах (для несцепленных генов).

Ключевой момент здесь то, что разные гены (если они не находятся в одной хромосоме) наследуются независимо друг от друга. Продолжим наш пример из жизни кошек. Длина шерсти (ген L) и окрас (ген В) наследуются независимо друг от друга (расположены в разных хромосомах). Короткая шерсть (аллель L) доминирует над длинной (l), а черный окрас (B) над коричневым b. Предположим, мы скрещиваем короткошерстного черного кота (BB LL) с длинношерстной коричневой кошкой (bb ll) .

В первом поколении (F1) все котята будут черными и короткошерстными, а генотип их будет Bb Ll. Однако коричневый окрас и длинношерстность никуда не делись контролирующие их аллели просто «спрятались» в генотипе гетерозиготных животных! Скрестив кота и кошку из этих потомков, во втором поколении (F2) мы будем наблюдать расщепление 9:3:3:1 (9 короткошерстных черных, 3 длинношерстных черных, 3 короткошерстных коричневых и 1 длинношерстный коричневый). Почему так происходит и какие генотипы у этих потомков, показано в таблице.

В заключение еще раз напомним, что расщепление по законам Менделя явление статистическое и соблюдается только в случае наличия достаточно большого количества животных и в случае, когда аллели изучаемых генов не влияют на жизнеспособность потомства. Если эти условия не соблюдаются, в потомстве будут наблюдаться отклонения от менделевских соотношений.

Химия, Биология, подготовка к ГИА и ЕГЭ

В предыдущих законах —, в законе единообразия и законе расщепления мы рассматривали наследование одного признака.

Третий закон Менделя описывает наследование двух признаков.

Дигибридное скрещивание —, скрещивание особей с двумя парами признаков (2 аллели).

1-й признак обозначается одной буквой, например, А —, черная шерсть, а —, светлая шерсть у собаки.

2-й признак —, длинна шерсти —, В —, длинная шерсть, b —, короткошерстная.

В своих работах Мендель показал закон на таком примере: скрестили две гетерозиготные особи: AaBb AaBb:

AABB aabb (черная длинношерстная и беленькая с короткой шерстью)

Какие в этом случае образуются гаметы? Обратите внимание —, В КАЖДОЙ ГАМЕТЕ ДОЛЖНЫ БЫТЬ ОБА ПРИЗНАКА!

Варианты гамет особи: AB, Ab, aB и ab

Распишем образовавшиеся особи по генотипу и фенотипу: AABB —, черная длинношерстная —, 1 шт,

AABb —, черная длинношерстная —, 2 шт,

AaBB —, черная длинношерстная —, 2 шт,

AaBb —, черная длинношерстная —, 4 шт,

Обратите внимание —, у нас уже 4 разных генотипа дают 1 фенотип !

ААbb —, черная с короткой шерстью —, 1 шт,

Aabb —, черная с короткой шерстью —, 2 шт,

ааBB —, белая длинношерстная —, 1 шт,

ааBb —, белая длинношерстная —, 2 шт,

aabb —, белая с короткой шерстью —, 1 шт.

Итого у нас получилось 16 особей:

черные длинношерстные —, 9 шт,

черные с короткой шерстью —, 3 шт,

белая длинношерстная —, 3 шт,

белая с короткой шерстью —, 1 шт.

Расщепление по фенотипу: 9 : 3 : 3 : 1

Если полученные Г. Менделем результаты рассмотреть отдельно по каждому признаку (цвету и форме), то по каждому из них будет сохраняться соотношение 3:1, характерное для моногибридного скрещивания. Отсюда Г. Мендель заключил, что при дигибридном скрещивании гены и признаки, за которые эти гены отвечают, сочетаются и наследуются независимо друг от друга. Этот вывод получил название закона независимого наследования признаков —, третий закон Менделя.

Основным условием закона является несцепленность генов —, т.е. они располагаются в разных хромосомах (!)

При составлении такой решетки Пеннета (55) и определении признаков надо быть внимательным —, при подсчете легко ошибиться, но на экзамене не стоит тратить на это время. Третий закон дает простую формулу: наличие двух признаков и гетерозиготных особей —, дает 16 потомков с расщеплением по фенотипу 9 : 3 : 3 : 1.

Если комбинации другие, то надо, конечно, считать, и считать очень внимательно!

  • в ЕГЭ это вопрос A7 Генетика, ее задачи, основные генетические понятия
  • А8 Закономерности наследственности. Генетика человека
  • С6 задачи по генетике

Основы генетики

Обсуждение: Третий закон Менделя

Лолита, скажите пожалуйста, а можно ли записывать расщепления по фенотипу и генотипу отдельно для каждого признака? Например, нас в школе учили такой записи ответа:

по цвету шерсти: по ф/т: 3:1 (12 черн., 4 светл.), по г/т: 1:2:1 (4 гомозиг. по домин., 8 гетерозиг., 4 гомозиг. по рецес.),

по длине шерсти: по ф/т: 3:1 (12 длин., 4 кор.), по г/т: 1:2:1 (4 гомозиг. по домин., 8 гетерозиг., 4 гомозиг. по рецес.).

Просто если, допустим, признаков не два а больше, то сваливать их все в одну кучу будет ОЧЕНЬ не удобно, и легко запутаться. К тому же при разделении на признаки нагляднее просматривается независимое наследование. Но можно ли так делать?

А вообще, придираются ли эксперты ЕГЭ к оформлению задачи? Наша учительница по биологии всегда очень жестко этого требовала и снижала оценки если, например, не напишешь в условии «,Дано (ген-признак):», или не распишешь типы гамет.

Как вы решаете —, это экзаменаторам не очень важно. Важно, что вы пишите после слова «,ОТВЕТ»,…,

От того, распишите ли вы правильно гаметы, зависит решение задачи, все остальное —, необязательно.

Важно, чтобы вы давали ответ именно на поставленный вопрос, а не расписывали все, что знаете по теме «,генетика»,

Спасибо большое за ответ! Вы меня успокоили:)

Понравилась статья? Поделить с друзьями: